If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-18y=0
a = 1; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·1·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*1}=\frac{0}{2} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*1}=\frac{36}{2} =18 $
| -11(x=2)-66 | | 8(w-9)-2=-7+7(w-8) | | 3(2x+5)-6=2(4x-7)+11 | | c^2+4c-16=-10 | | r3=6 | | 5+6k=2k+1 | | 40=-4x-12 | | 1.75=(1+r*5) | | 8x=10x+9=21x-12 | | 76-3x=-19 | | 34x+60=50+52x | | 50+2x=15+12x | | -1.6x-3,4x=-45 | | f(-10)=2(-10)+5 | | 10-(x-15)=-70 | | 1-(x-15)=-70 | | S=3+.75s | | 8x^2-70x-18=0 | | 34+60x=50+52x | | 5+6k=2k+15+6k=2k+1 | | 4x–12=30–3x | | 3(5x-9)=9^(4x) | | 2/3x-2=5-1/2 | | -2y-9=4y+33 | | 3x+4.8=0.72x+18 | | 23.7=3/4y | | 6=-4v | | x+30*2=174 | | 13+x/2=31 | | 21-h=15;h=15 | | 4w-8+2=-18 | | 0.25xM=18x252 |